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Topicality of Research. Studies of differential properties of one-variable
andd multi-variable functions represent one of the main issues of real analysis,
which features different aspects on what kind of function or what kind of
differentiation is examined. In this respect, particular emphasis in studies has

been placed on the function classes of bounded variation. A classical result of

lebesgue on differentiability of one-variable function of bounded variation
ulmost everywhere, became an initial point of actual research conducted by
lLebesgue, Saks, Busemann and Feller, Zygmund, Burkill and Haslam-Jones,
Stepanov, Kronrod, Vitushkin and others, and they were aimed at
multidimensional extension of the mentioned result of Lebesgue through the
ibility of establishing the i
The picture of the obtained results along this line at the moment can be
developed by monographs of Saks [Sal], de Guzman [Gu], Vitushkin [Vi],
Oniani [O1] and works of Zerekidze [Ze] and Stokolos [Sk].

There are different definitions of differentiation (derivation) (for example,

different possibl

s, Or even at

P

see the [Sal], [Gu],[Sn],(Br],[Mu]), which represent the variations of two
classical definitions: the first one — is an ordinary differentiation (that means
possibility of local approximation of a function by the a linear mapping);
another one — is a derivative in the Bettazzi sense which is a limit of a ratio of
mixed difference of a function on n-dimensional interval (or value of a
function of interval) to the volume of the same interval. Generalization of
classical definition of gradient was suggested by Dzagnidze [Dz1] and then by
its application it was established a number of interesting structural properties of
multivariable functions. Along this line, the obtained results are gathered in
monographs [Dz2] and [Dz3).

The Aim of Dissertation. The Study of divergence characteristics of the
strong means of additive functions of intervals having bounded variation;
investigation of differential properties of multivariable functions having
bounded variation in the Hardy and Arzela sense, from the standpoint of the

e of strong gradi comparing the condition of existence of
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generalized gradient with respect to a basis with
differentiability point-wise and on sets of positive measure.
RuurchNovelty.

1) There is obtained an exact estimate of t

the condition of

he rate of divergence of strong
means of an additive function of intervals having bounded variation;

2) There is established that each function having bounded variation in the
Hardy sense has a strong gradient at almost every point (that is a stronger
conclusion then the one on diHerenxiability almost everywhere);

3)  There is constructed an example of continuous function having bounded
variation in the Arzela sense, which almost nowhere has a strony
gradient;

4

There is introduced the definition of generalized gradient with respect to a
basis and is made a complete solution of

the condition ofdifferentinbility:
5

There are found the following two natural

differentiability.

Approbation of Work. The dissertation results have been presented at the
Scientific seminar on Function Theory and Functional Analysis at the Ivane
Javakhishvili Thilisi State University (Head of the Seminar — Academician L
Zhizhiashvili), at the Scientific Seminar of the Department of Mathematics at

Union (Batumi, September 2-9, 2012).

Publi.
F

There are published five scientific works, which are listed
below the text of this author’s abstract,
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a s oE
i tion contains 76 pages. It consists o
‘T'he size and the structure. The dissertat 1L iret . =
A (- 4

bibli
the introduction, two chapters and grap

names

Content of Dissertation - ——
In the first chapter there are considered the differential propert:s : ;
i iti i i avin
following three types of functions: the additive functions of an xm:rv ’ thi
o iation i sense;
bounded variation; the functions of bounded variation in the Hardy

iation i Arzela sense.
ctions of bounded variation in the . .
'“"";""sthe first and second paragraphs there is provided the fn::ess:r;
. i i undes
nformation on multivariable functions having the different types o
1

variation. ' ) —
In the third paragraph there is obtained an exact estimate of th
n

divergence of strong means of an additive function of intervals having bounded

A [‘on. s . . l
::ml; be a function defined on the class of all 7 -dimensional intervals
t

S -
(briefly: function of intervals). F* is said to be an additive if for any nol
riefly:

ion is an i we have
overlapping intervals /,,...,/, whose union is an interval /

F(I)=iF(l,).

A partition of an interval / is a finite family of l?tfn—overlapping intervals
whose union is /. Let I'T, be the collection of all pamuons' of' i, . :
A function of intervals F is said to be of bounded variation on an interv:
. K(F)=§3£;|Fu)|<w.
F is said to be of bounded variation on R”" if the supremum of V, (F')

ken over all intervals / is finite. Denote the supremum b V(F). The class
takel y
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of all additive functions of »
[R" denote by V'(R").

For xe R"

-dimensional intervals of bounded variation on

+ let us denote by II(x) the family of all 7 -dimensional in-
tervals I=[a,,b,]><~~~x[a,,,h,,] with b —a, >0 (kel,n) containing x .

For n  -dimensional interval / =[a,,b,]X~~-X[a",b”] denote
L =b,~a, (kel.n).

A function w:(0,1)"" —(0,%0) which is decreasing with respect to
each variable will be called a weight. We will say that a weight w satisfies the
condition (K) if

dty---dr, |

—_———————<w,
CRE R P 1 (P

(0.1)

Remark 1.3.1. Condition (K) is satisfied by functions

fin !

n-l

[.ni...,i ..... .HLJ'” s w0

and is not satisfied by the function

1 1 1
In—-In—..... In—.
4 4 LA
The same may be said about more general type functions, such as
k—times Lt
1 1 1 —
Woke (a5t ) = [T = 1nm—..... (Inln-nln—J
il 1, 7 1,

when €>0 and £=0, accordingly. Thus, when 1 = 2, condition (K) is

1he
1

satisfied by functions (ln—) (6‘>0) » and is not satisfied by the
[

1
function In-.
t
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Let P, be the class of all permutations of the set {1,...,7}.
n

For a weight w, f € L(R"),F eV (R") and x & R" denote
1

M, (/)= lel(f)‘.l.zmlq l:l‘i'l,”x | 7] W(III(I)(I)"'"IP("'”(I))
V,(F)

R s T (T s s

lel(x)diami<\ PEF,

;flfl;

We denote by ¢(@,,...,@,,) positive constants depending only on the
e PN 2 4
parameters &y,..., &, . '

S. Saks [Sa2] and H. Busemann and W. Feller [BF] constructed a function
£ EI;(JR") /20, whose strong integral means diverge unboundedly at

every point, in particular,

limsup =1 _[f =0

rexcodiamt >0 | 1| 7

"
for every x € R".
Nr)t, that the maximal integral class, where the convergence of strong
ote

means is guaranteed, is L(1+In" L)™' (R") (see [JMZ] and [Sa31?. !
G. Karagulyan [Ka] obtained an exact estimate of the rate of divergence of

integral means. Namely, he proved B
mong’;'ll‘ll::mm 13.A. If a weight w satisfies the condition (K), then for

every [ € L(R")

1 .[/ = of min w(l,,y (D)seedy (D) ), as 1 €1(x), diaml 0
|17 k2

k 1y
imost every ermore the operator ., 15 of weak (ype
for almost xeR"; furth, re th tor M S f f

(L1), ie,
c(w,n) (f €L(R"), A>0).
[{M () > A} 2 R[U'] :
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If a weight w does not satisty the condition (K), then there exists
/eL(R"), S 20, such thar

i 1
limsup —— ° = .
ld‘l.l::lllsumlpan, LW (D). 1 (1)) ;[/ ©

for every xe [R”,

The following result extends Theorem 13A to the strong means of
additive functions of intervals with bounded variation.

Theorem 1.3.1. 77 a weight w satisfies the condition (K), then for every

FeV(R")
£l Ol / ) _ ;
7~ o[ llnl,ll] WL (D), (D) ], as Ie I(x), diami - o
for almost every x e R" . furthermore
TAE)> 2Dy ry (peymey, 150

Remark 1.33. Zer w pe s weight which does nor satisty condition (K) and

let [ be a function from the second part of Theorem 1.3.A corresponding to

W Then assuming F (] )= J:f for any n -dimensional interval | , we

conclude the exactness of the estimation given in Theorem 131,
Remark 1.34. Theorem 1.3.1 finds its essential application in fourth

paragraph, when studying the differential properties of functions having
bounded variation in the Hardy sense.

property.
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1 us reming e necessary definitions and information on functions o
Let us d th defi d infi fui f
fwmnded variation in  the Hardy and in the Arzela sence, as well as on

delinition of the strong gradient. . .
for x,y€R" with x< p (ie, x, <y, for every i€l,n), denote by
For X,

he interval ﬁ[x ¥,]. The mixed difference of £ :[0,1]" = R on an
the 1Y)

el
interval [ = 1! <[0,1]" is the quantity

"

e
A(S I)=i i D)L= Gy 6 = %)X, 18,0, — X))

520 £=0

I

Let TT be a family of all partitions of [0,1]". .
A function f:[0,1]" = R is said to be of bounded variation in the
nction f :[0,
Vitali sense if

sup ) |ACS, 1) [< .

Pell jep ‘
Denote by V, the class of all functions on [0,1]" of bounded variation in
nol e

the Vitali sense. =
Denote by | B | a number of elements ofaset B 1,n. ’
i 1 b
For B 1,n with 0<|B[<n,te[0,1]"" and 7 €[0,1]%, denote by

= if igB and
|

(t,7,B) the point of R" for which (t,7,B), T

t7,B), =1 , ifi€B. o o
Let f be a function on [0,1]". For B l,n with 0<|B|<n
1 €[0,1]""", denote by f,, the function on [0,11% for which
8 s 7 :
13,0 = f((t,7,B)) (z €[0,1]1).
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Furthermor, =
e denote f, = £, where 0 is the zero element of R” ¥

is obvious that Jm=F.

At s " s
o ncu.on S0 SR s said to be of bounded variation in the
ardy sense if / and its every section is of bounded variation in the Vitali

sense, ie., /'€V, and Ty € Vg for every B Ln with 0 <| B|< n and

1e[0,1]"# i
[0,11"". The class of all functions on [0,1]" with bounded variation in

the Hardy sense is denoted by Hl, . By one result due to Leonov [Le]

feH, = [, eV, (Bcin,Bx)
Recall that a Lebesgue indefinite int,

defined as follows

Fw= | Sy
03 e+ +{0.x ]

egral of a function SeL[0,1]" is

(xe[0,1]").

rom the above- tione: Bt ov Obviously follows that
above-mentioned result of Leon it ously follows
F h b 1 I hat a

L z S
ebesgue indefinite integral of an arbitrary function SEL[0,1]" is of
bounded variation in the Hardy sense. - ’ o

A function f:[0,1]" - R

any X,y €[0,1]" with x<y .

is said to be increasing if A(f,17)>0 for

Denote by M, the class of all increasing

fors - " :
nctions f:[0,1]" 5 R . It is obvious that M, cH . An increasing
o

funcuor‘l is a.e. continuous (see [YY]) and therefore is measurab)
Itis well known that a function of bounded variation in
can be decomposed as a difference of two increasin,
A function f:[0,1]" - R

Arzela sense if the set of all sums

le.

the Hardy sense
g functions (see e.g.[AC)).

is said to be of bounded variation in the

;l./(m.)—f(.n)l,
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where meN and (0,...,0)=x, <x, <---<x, =(1,...,1) , is bounded.
Mote that every function of bounded variation in the Hardy sense is also of
loninded variation in the Arzela sense (see e.g. [AC] or [Ho)).
Forn22,heR"and i € G , denote by A(i) a point in R” such that
(i), = h, for every jem\{i} and h(i), =0 . For iem, let L, be a
hyperplane {he R :h, =0} .
Let f be a function defined in a neighborhood of a point x € R" . If for

i € l,n there exists the limit

R*\L k-0 h,

then we call its value the i -th strong partial derivative of / at x and denote
it by Dy, f(x). If f has finite Dy, f(x) for every iEl,-—n. then following
Dzagnidze [Dz1] we say that there exists a strong gradient of / at x or / has

a strong gradient at x .

The definition of strong gradient was introduced by O. Dzagnidze [Dz1]
due to studies of differential properties of Lebesgue multiple indefinite integral

As is known, the existence of ordinary gradients, i.e. of ordinary partial
derivatives at the point, does not imply differentiability of a function. As
distinguished from ordinary gradi the strong gradient origi a stronger
condition than differentiability is. In particular, O. Dzagnidze [Dzl] has
established that: if the function has a strong gradient at a point, then it is
differentiable at the same point; but the reverse implication is not generally

2/3
valid, namely the function [’ (x,,).’2 ) = Ix,le : is differentiable at point 0,
but it does not have a strong gradient at the same point.
Let us say that a condition (A) is essentially stronger than a condition (B)
(or (B) is essentially weaker than (A)) if: 1) The satisfaction of (A) at the fixed
point implies the satisfaction of (B) at the same point; and 2) There is a
33




function, for which (B) is satisfied at each point of a some set of positive
measure, but (A) is not satisfied at no point of the same set.
G.G. Oniani [02] established that the condition of existence of a strong

gradient is essentially stronger than the condition of diﬂ"erentiability‘ In
particular, he proved the following result.

Theorem 1.2.A. for arbitrary n > 2 ¢h,
J:[0,1 "> R such that:

L[ isdifferentiable almost everywher ,

ere exists a  continuous function

o X+h)= f(x+h
2 lim w = almost everywhere and consequantly,
R4 k0 f

1
/ almost nowhere has a Strong gradient,

Now, let us move to the review of results established in the fourth and
fifth paragraphs.

The differential properties of multivariable functions having bounded
variation were studied by different authors. [n particular, Burkill and Haslam-
Jones [BH] proved the following:

Theorem 1.4.A. Esch function f:[0,1]" > R of bounded variation in

the Arzela sense ( and consequently, in the Hardy sense) js differentiable
almost everywhere.

Besides, it is also known that every function on [0,1]" of bounded
variation in the Kronrod-Vitushkin sense is differentiable a, e (Kronrod [Kr]
(for n=2), Vitushkin [Vi] (for arbitrary 72> 2)). There exists a function on

[0.1T with bounded variation in the Tonellj sense which is nondifferentiable

everywhere (Stepanoff [St]). Note that an analogous statement for functions of
bounded variation in the Vitali sense is obvious.

Since an indefinite integral of arbitrary  f e £[0),] 1" has a bounded
variation in the Hardy sense, by virtue of Theorem L4.A itis differentiable ae.
However, as shown in Dzagnidze [Dz1) (for p = 2)and Dzagnidze and Onianj
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i ial
10] lor arbitrary 722), an indefinite integral has a stronger dlfferen:;]a
N or = |
: 1y, namely, it has a strong gradient a. e. In this context, there natfu o);
B ;uunion whether an analogous conclusion is true for every function
WHReN A ques : .
hounded variation in the Hardy sense ( in the Arzela sens'e) N i
An answer to this question is provided by the following theorems. -
Theorem 1.4.1. Every function f :[0,1]" — R of bounded variation in
the Hardy sense has a strong gradient almost el;'eryw;)e:,the —
1 is essentially used i
Remark 1.4.2. Theorem 1.3.
H.]"I'hconm 1.5.1. For arbitrary n=2 there exists a continuous function
/:[0,1]" > R of bounded variation in the Arzela sense that nowhere has a
; dient. -
“m”ffg»:'ae take into account that evevry function of bounded variation in tl:llel
, we wi
Arzela sense is differentiable almost everywhere (see Theorem 1.4,.':)2\;
derive from Theorem 1.5.1 the following improvement of Theorem 1.2.A.

m 15.2. or arbilrary "2 2 (hE"E exists a continuous ﬁl”flla’l

rem 1. F

S:[0,1]" > R that is differentiable almost everywhere, but nowhere has a
Y%

strong gradient.

> i : .
In the second chapter a question of comparing the condltlf)ns‘ -of exnls:lem:'s
f alized gradient with respect to a basis and of differentiability there i
of gener:
considered.

e il uestions
dient with respect to a basis and reviewed the known results and q
gradi

h there is introduced the definition of generalized

related to this definition. -
& th
By I1 (iel,n) denote the class of all  sets Ac R" with the

i

rties: A()L, =& and the origin 0isa limit point of the set A.
properties: ’
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Let iel,‘n, A€ll, and S be a
neighborhood of a point x € R”

function defined in some

- If there exists the limit

o /(x+h)—f(x+h(i))'

then we call its value (
4 D,\/(x) :

A basis of generalized gradient generating (briefl,

i,A)~paniaI derivative of / g point X and denote it

y: basis) we define as an
1 -tuple A =(Al,--~.A,,), where A, €T, for each ieln.

If for a basis A =(A,.~--,A,,) a function /' has (i, Ai)-derivativc at

point X for every ieﬁ + then we will say that S has a generalized
gradient - with respect to basis A =(A,,-'-,A”) (briefly, A -gradient) ar
point x .

The definition of a generalized gradient with Tespect to a basis represents

the direct generalization of definitions of angular gradient and of strong
gradient introduced by O. Dzagnidze [Dz1)

Let us briefly review the well-known e
properties. Along this line, quite exhausti
monographs [Dz2] and [Dz3).

xamples of bases as well as their
ve information is provided by

Foranangle 0< @ < 7/2 Je us denote the basis for which

maxlh,l =
Ala) = helR":"I'TSIga (iel.n).

It is obvious that A(O) = (O,\‘I \{0},~-~,0x,, \{0}).
Let us define A(II/Z) as the basis (]R" \L,--- . R" \L").
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let us pick out separately the “initia]” - A(O) , sintermediate"-
Ala) (0<a<7z/2) and“final” - A(7/2) cases.

Note that: the basis A(O) generates the ordinary gradient(i.e. the
condition of existence of ordinary partial derivatives); and the notion of
A ( nl 2) -gradient coincides with the one of strong gradient.

What else do we know about A() bases? Note that first of all we are

interested in interrelation between condition of existence of A(a)-gradiem
mnte

is li h

and condition of differentiability. Along this line, there are known the

following interesting results: ‘ 4 ..

1) The condition of existence A(O) ~gradient (ordinary gradient) is

essentially weaker than condition of differentiability (Tolstov [To,

§4)):

T n dition Gf
—<a<— the c
2) For 7 2

e of A(Q) -gradient is

equivalent to  differentiability condition (0. Dzagnidze [Dzljjf '
3) The condition of of A(7/2) -gradi (slml‘lgf,' ) is
essentially stronger than the condition of differentiability (G.G.
Oniani [02], see Theorem 1.2.A). ‘
Thus, in limit cases - A(O) and A(ﬂ'/Z) we derive essentially weaker

d essentially stronger conditions than differentiability is, respectively; but
an
“the second half* of intermediate cases - A(a) (r/4<a< lt/Z) bases

give the condition equivalent to differentiability,
Let A=(A,..,A,) be a basis. For a function f:R" >R by
=(4,..-.4,

E (f) denote the set of all points at which /* has A —gradient, and by
A

B (f) denote the set of all points at which /" is differentiable,
~D
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Denote also:
"/1"=max {lllll,.“,'h,,” (helR"),
I(r)= {he R":h=0, "h"<r}, (r>0) .
I(x,r) = {)—E Ry < r} (xer", r> 0).
M=MUoM (McRr").

Le i =
t us call a basis A = (A,....,A”) regular, if there exist 7> () and

O<a<7/2  such that ANI(r) c Afa),
1
A, NI(r) = Aa),.

L i =
et us call a basis A = (Al,....A") complete, if there is exists 1> ()
suchthat [(r)c A U..UA .
For a basis A= (Al,....A )

A=(A\L,...A, WA

by A denote its closure -

In the second paragraph there is considered the foll

A=(A,..A,)

equivalent to differentiability condition? Generally,

lowing question: Let

be ; . o
a basis. When is the condition of existence of A -gradient

. what kind of inter i
i relation
is between the condition of existence of A

s -gradient and differentiability

The theore i i
e ms glven below provide a complete answer to the question for
e classes of both arbitrary and continuous functions,

Theorem 2.2.1. /n order thar existence of A -gradient might imply

(f) € Ey (f) mighe be futhitied

=R ), it is necessary and sufficient that A be

differentiability (i.e. that the condition E

A
for each function [ :R"
complete.
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Theorem 2.2.2. In order that for every conti) function existence of
A gradient might imply differentiability  (ie. that the condition
(/)< Ey(f) might be fulfilled for each function [ :R" — R ), it is
necessary and sufficient that A be complete.

Theorem 2.2.3. If A is regular, then differentiability implies existence
of A -gradient (ie. the condition E, ( it ) (=1 % ( I ) is fulfilled for every
function [ : R’ > R).

Theorem 2.2.4. If A is irregular, then differentiability does not imply

e of A -gradi and there exists a continuous function
f:R" >R such that ED(f)\EA(f)#Q.
From Theorems 2.2.1-2.2.4 there follow

Corollary 2.2.1. In order the condition of e of A -gradient to be
equivalent to the differentiability ~ condition (ie. the equality

E, (f)= E, (f) to be fulfilled for every function f:R" —R ) it is

necessary and sufficient that A be regular and complete.
Corollary 2.2.2. In order the condition of of A -gradient to be
equivalent to the differentiability condition in the class of continuous functions

(i.e. the equality E”( f ) =E, ( iy ) to be fulfilled for every continuous

function f :R" — R ) it is necessary and sufficient that A be regular and

and A be complete.

In the third paragraph there is considered a question of comparing a

condition of exi of g lized gradient with respect to a basis and the

differentiability condition on positive measure sets.

According to Theorems 2.2.1 and 2.2.4, if A basis is complete and A
allows anisotropic (tangential) approximation of increment of argument to
zero, then the condition of existence of A -gradient is stronger than the
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differentiability condition. Also we know that

: (see Theorem 1.1.A) j
dealing with the basis A(II/Z) o

—_ (i.e. when anisotropy of increment is not
tted), then we derive a consid,

erably st iti i
” Y stronger condition than dxfferentiability
The question arises: which anisotro,

k. PY parameter i
T s et P 0es cause creation of the

ntially stronger than differentiability?
Below we will formulate result, whi
) < :

“ssc.nnal strengthening of dlffcremiability condition is represented b
anisotropic density"(from the me: i o
briey asure standpoint) of a set of increments

Let us introduce exact definitions.

For an interval /= 1, x--x I denote
max I,, .
lj(l):‘,T (iel,n).

Let us call a set £ = R”

. anisotropically d, i i
WP pically dense at point 0 with respect to

. : there exist a number a@>0 and a sequence of n -
dencnsmnal intervals (/‘ )"N with  the following Pproperties:
diaml, -0 (k- ©) 0 i a cemer of L (ke N)'.
. . E

()= ® (k- w); %za (keN).
. A basis A =(A,,---.A”) will be called anisotropically dense, if among
Its components A, at least one is anisotropicall

i-th variable,

Theorem 2.3.1. /1 a basis A is anis

j 3.1, S A 1s anisotropically dense, s exis
continuous function [ R" >R such lhaf e

Df s differentiable almost everywhere,

y dense at 0 with respect to
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has a A di

5

2) [ almost

Corollary 23.1. If a basis A is complete and anisotropically dense,
then the condition of existence of A -gradient is essentially stronger than the
condition of differentiability.

Finally, I would like to express my deepest appreciation to scientific
adviser Professor Giorgi Oniani for collaboration and fruitful discussions.
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